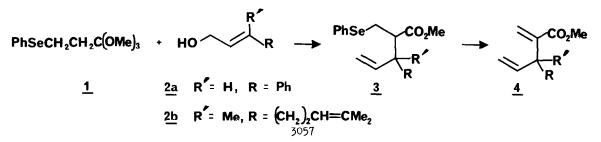
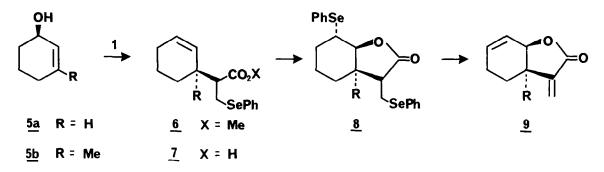
Tetrahedron Letters No. 33, pp 3057 - 3060. © Pergamon Press Ltd. 1979. Printed in Great Britain.

CLAISEN ORTHO ESTER REARRANGEMENT WITH TRIMETHYL 3-(PHENYLSELENO)ORTHOPROPIONATE: A SYNTHON FOR THE PREPARATION OF 2-SUBSTITUTED ACRYLATES AND α -METHYLENE- γ -BUTYROLACTONES¹

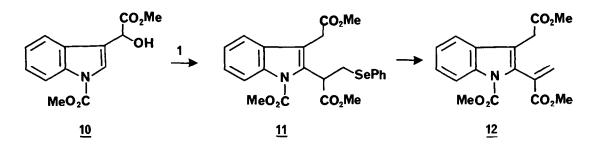
Stanley Raucher, Ki-Jun Hwang, and James E. Macdonald


Department of Chemistry, University of Washington, Seattle, Washington 98195

Summary: Trimethyl 3-(phenylseleno)orthopropionate may be utilized as a synthon for the preparation of either 2-substituted acrylates or α -methylene- γ -butyrolactones via Claisen ortho ester rearrangement with allylic alcohols followed by oxidative-elimination of PhSeOH.


The 2-substituted acrylate moiety is present in a variety of interesting compounds. Recently, in connection with projects directed toward the synthesis of a number of natural products, we desired to develop a general method for the regio- and stereospecific introduction of a masked 2-substituted acrylic acid moiety via [3,3] sigmatropic rearrangement.² Although Still³ has reported a clever procedure for this transformation based upon the rearrangement of enolates⁴ derived from esters of allyl 3-(pyrrolidino)propionates, our requirements necessitated the use of a thermal Claisen ortho ester rearrangement.^{5,6}

We now wish to report that trimethyl 3-(phenylseleno)orthopropionate $(\underline{1})^8$ readily undergoes Claisen ortho ester rearrangement with allylic alcohols $\underline{2}$ to give methyl 2-substituted-3-(phenylseleno)propionates $\underline{3}$.⁹ It is noteworthy that no β -elimination to the corresponding 2-substituted acrylates $\underline{4}$ occurs under the rearrangement conditions. Generation of the acrylate moiety by oxidative-elimination of PhSeOH may be effected either in the next step, or after other desired transformations have been carried out.


For example, the reaction of cinnamyl alcohol ($\underline{2a}$) with $\underline{1}$ (1.5 equiv) and trimethylacetic acid (0.05 equiv) at 170 °C (18 hours, argon atmosphere) gave the Claisen ortho ester rearrangement product $\underline{3a}$ as a mixture of diastereomers¹¹ (84% yield); oxidation of $\underline{3a}$ with 30% H_2O_2 (4 equiv) in THF at 25 °C afforded the 2-substituted acrylate $\underline{4a}$ in 80% overall yield from $\underline{2a}$. No isomerization to the more stable conjugated isomer could be detected.⁹ Likewise, heating geraniol ($\underline{2b}$) with $\underline{1}$ (1.3 equiv) and trimethylacetic acid (0.1 equiv) in mesitylene (3 mL per mmol of $\underline{2b}$) at 160 °C (20 hours, argon atmosphere) gave $\underline{3b}$ as a mixture of diastereomers¹¹ (64% yield); oxidation, as above, produced 4b in 61% overall yield from 2b.

We have also utilized the ortho ester <u>1</u> for the synthesis of α -methylene- γ -butyrolactones¹² as an example of a procedure in which oxidative-elimination of PhSeOH is deferred until after other transformations have been effected. Reaction of 2-cyclohexen-l-ol (<u>5a</u>) with <u>1</u> (1.5 equiv) and trimethylacetic acid (0.1 equiv) in mesitylene (3 mL per mmol of <u>5a</u>) at 160 °C (24 hours, argon atmosphere) gave <u>6a</u> as a mixture of diastereomers (55% yield). Treatment of <u>6a</u> with LiI (5 equiv) in 2,6-dimethylpyridine (reflux, 2 hours, argon atmosphere) afforded the carboxylic acid <u>7a</u> (75% yield) after normal work-up.¹³ Selenolactonization¹⁴ of <u>7a</u> to <u>8a</u> (70% yield) followed by oxidative-elimination of both phenylseleno groups (8 equiv 30% H₂O₂ in THF at 25 °C) gave the known¹⁵ <u>cis</u>-fused α -methylene- γ -butyrolactone <u>9a</u> (90% yield). In an identical manner, 3-methyl-2-cyclohexen-1-ol (<u>5b</u>) was converted to <u>6b</u> (40% yield), then to <u>7b</u> (93% yield), <u>8b</u> (61% yield) and <u>9b</u> (60% yield).

Finally, we have also effected Claisen ortho ester rearrangement of 1 with methyl <u>N</u>-carbomethoxy-3-indoleglycolate (10) to give the 2,3-disubstituted indole 11;¹⁶ oxidativeelimination afforded the acrylate 12. This compound is of potential utility for the preparation of the iboga alkaloid catharanthine via a [4+2] cycloaddition with an appropriate 1,2-dihydropyridine.¹⁷ Futhermore, 2-(2-indolyl)-acrylates have been utilized for the preparation of aspidosperma alkaloids.¹⁸ and have been postulated to be key intermediates in the biosynthesis of indole alkaloids.¹⁹

We are currently investigating the use of \underline{l} for the total synthesis of a number of natural products.

Trimethyl 3-(phenyseleno)orthopropionate (1) was prepared by the following procedure. A suspension of PhSeSePh (50.0 mmol) in EtOH (150 mL) was reduced with $NaBH_{A}$ (~6 g) at 0 °C until the yellow color was discharged; 3-bromopropionitrile (100 mmol) was added dropwise at 0 °C, the mixture was stirred for 30 min, the EtOH was removed in vacuo, and the residue was extracted with ether, dried (MgSO $_A$) and distilled (bp 101-103 °C, 0.04 mm) to give 3-(phenylseleno)propionitrile (97% yield). Anhydrous HCl (44 mmol) was added to a solution of 3-(phenylseleno)propionitrile (40.0 mmol), absolute MeOH (44 mmol) and anhydrous ether (40 mL) at -20 °C. The mixture was stored in a freezer at -20 °C for 4 days during which time a large amount of imidate hydrochloride crystallized from the solution. These crystals were filtered under argon, washed with ether, and dried in vacuo to give methyl 3-(phenylseleno)propionimidate hydrochloride (65% yield). The imidate hydrochloride (26 mmol) was suspended in dry hexane (25 mL), absolute MeOH (65 mmol) was added and the mixture was stirred at 20 °C for 4 days. Triethylamine (0.5 mL) was added, the mixture was filtered, the hexane solution was dried (K₂CO₃), the hexane was removed in vacuo, and the residue was distilled (bp 140 °C, 0.02 mm) to give 3-(phenylseleno)orthopropionate (92% yield): ¹H HMR (CCl₄) δ 1.95 (m, 2H), 2.80 (m, 2H), 3.10 (s, 9H), 7.25 (m, 5H).

<u>Acknowledgment</u>: This research was supported in part by funds from an American Cancer Society Institution Research Grant to the University of Washington, and the University of Washington Graduate School Research Fund.

REFERENCES AND NOTES

- Synthesis via Sigmatropic Rearrangements. 3. For previous paper in this series, see: S. Raucher, A. S.-T. Lui, J. E. Macdonald, <u>J. Org. Chem</u>., in press.
- (2) For recent reviews, see: (a) S. J. Rhoads and N. R. Raulins, Org. <u>React.</u>, <u>22</u>, 1 (1975);
 (b) F. E. Ziegler, <u>Acc. Chem. Res.</u>, <u>10</u>, 227 (1977);
 (c) G. B. Bennett, <u>Synthesis</u>, 589 (1977).
- (3) W. C. Still and M. J. Schneider, J. Am. Chem. Soc., 99, 948 (1977).
- (4) (a) R. E. Ireland, R. H. Mueller, and A. K. Willard, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 2868 (1976);
 (b) R. E. Ireland and R. H. Mueller, <u>ibid.</u>, <u>94</u>, 5897 (1972);
 (c) Reference 2b, footnote 20.
- (5) W. S. Johnson, L. Wertheman, W. R. Bartlett, T. J. Brocksom, T.-T. Lee, D. J. Faulkner, and M. R. Petersen, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 741 (1970).
- (6) Preliminary attempts to effect Claisen ortho ester rearrangement of cinnamyl alcohol ($\underline{2a}$) with triethyl orthoacrylate⁷ led to the formation of complex mixtures with no evidence for the production of $\underline{4a}$: S. Raucher and J. E. Macdonald, unpublished results.
- (7) H. Stetter and W. Uerdingen, <u>Synthesis</u>, 207 (1973).
- (8) This ortho ester is thermally stable at temperatures less than 175 °C.

- (9) Spectral data (¹H NMR, IR, high resolution MS) are in full accord for all new compounds. Yields refer to products purified by flash chromatography 10 utilizing silica gel 60 (40-63 $_{\mu m}$) with hexane-ethyl acetate eluent. Yields have not been optimized. ^{1}H NMR data $(CC1_A): 3a \delta 2.7 (m) and 3.0 (m) (total 4 H), 3.52 (s) and 3.54 (s) (total 3 H), 4.8 (m)$ and 5.0 (m) (total 2 H), 5.72 (dd, J = 9, 17 Hz, 1 H), 7.1 (m, 10 H). 3b & 1.05 (s, 3 H), 1.2 - 2.0 (m) and 1.55 (s) and 1.68 (s) (total 10 H), 2.5 (m) and 2.9 (m) (total 3 H), 3.53 (s) and 3.57 (s) (total 3 H), 5.0 (m, 3 H), 5.80 (dd, J = 10, 16 Hz, 1 H), 7.1 - 7.7 (m, 5 H). 4a & 3.57 (s, 3 H), 4.6 (m, 2 H), 5.10 (d, <u>J</u> = 10 Hz, 1 H), 5.45 (s, 1 H), 5.9 (m) and 6.12 (s) (total 2 H), 7.2 (m, 5 H). 4b & 1.30 (s, 3 H), 1.5-2.2 (m, 10 H), 3.63 (s, 3 H), 4.9 (m, 3 H), 5.46 (s, 1 H), 5.95 (dd, \underline{J} = 10, 16 Hz) and 5.98 (s) (total 2 H). <u>6a</u>δ0.8 - 2.7 (m, 8 H), 2.95 (m, 2 H, C<u>H</u>₂SePh), 3.59 (s, 3 H), 5.27 (m, 1 H), 5.65 (m, 1 H), 7.0 - 7.5 (m, 5 H). 6b δ 0.97 (s, 3 H), 1.1 - 2.0 (m, 6 H), 2.5 (m, 1 H, CHCO₂Me), 2.95 (m, 2 H, CH₂SePh), 3.60 (s, 3 H), 5.10 (d, <u>J</u> = 10 Hz, 1 H), 5.57 (m, 1 H), 7.0 - 7.6 (m, 5 H). <u>9a</u> & 1.3 - 2.3 (m, 4 H), 3.62 (m, 1 H), 4.85 (m, 1 H), CHO-), 5.50 (m, 1 H), 5.90 (m) and 6.14 (m) (total 3 H). <u>9b</u> & 1.22 (s, 3 H), 1.55 - 2.2 (m, 4 H), 4.30 (m, 1 H, CHO-), 5.35 (1 H), 5.90 (m) and 6.11 (s) (total 3 H). <u>12</u> δ 3.73 (s, CH₂CO₂CH₃) and 3.78 $(s, =CCO_2CH_3)$ (total 8 H), 3.99 (s, 3 H, NCO_2CH_3), 6.05 (d, J = 2 Hz, 1 H), 6.72 (d, J = 2Hz, 1 H), 7.2 - 7.8 (m, 3 H), 8.25 (dd, J = 6, 2 Hz, 1 H).
- (10) W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43, 2923 (1978).
- (11) (a) Two methyl ester peaks of approximately the same intensity are present in the ¹H NMR; both diastereomers produce the same α,β -unsaturated derivative upon oxidative-elimination of PhSeOH. (b) For the protection of α -methylene- γ -butrolactones as β '-phenylseleno derivatives, see: P. A. Greico and M. Miyashita, Tetrahedron Lett., 1969 (1974).
- (12) Reviews: (a) P. A. Grieco, <u>Synthesis</u>, 67 (1975); (b) R. B. Gammill, C. A. Wilson, T. A. Bryson, <u>Synth</u>. <u>Commun.</u>, <u>5</u>, 245 (1975); (c) S. S. Newaz, <u>Aldrichimica Acta</u>, <u>10</u>, 64 (1977).
- (13) J. E. McMurry, Org. React., 24, 187 (1976).
- (14) K. C. Nicolaou and Z. Lysenko, J. Am. Chem. Soc., 99, 3185 (1977).
- (15) (a) J. P. Marino and J. S. Farina, <u>J. Org. Chem.</u>, <u>41</u>, 3213 (1976); (b) P. F. Hudrlik, J. M. Takacs, D. T.-W. Chou, and L. R. Rudnick, <u>ibid.</u>, <u>44</u>, 786 (1979).
- (16) For [3,3] sigmatropic rearrangement of benzyl vinyl ethers, see: S. Raucher and A. S.-T. Lui, <u>J. Am. Chem. Soc.</u>, <u>100</u>, 4902 (1978).
- (17) R. J. Sundberg and J. D. Bloom, Tetrahedron Lett., 5157 (1978).
- (18) (a) F. E. Ziegler and E. B. Spitzner, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 7146 (1973); (b) M. E. Kuehne, D. M. Roland and R. Hafter, <u>J. Org. Chem.</u>, <u>43</u>, 3705 (1978).
- (19) (a) A. I. Scott, <u>Acc. Chem. Res.</u>, <u>3</u>, 151 (1970); (b) E. Wenkert, <u>J. Am. Chem. Soc.</u>, <u>84</u>, 98 (1962).

(Received in USA 26 April 1979)